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SUMMARY 

This report describes a theoretical investigation of three-dimensional 
relativistic klystron interaction. The relativistic axisymmetric equations 
of motion are derived from the time-dependent Lagrangian function for a 
charged particle in an electromagnetic field. An analytical expression of 
the fringing RF electric and magnetic fields within and in the vicinity of 
the interaction gap and the space-charge forces between axially and radially 
elastic deformable rings of charges are both included in the formulation. 
This makes an accurate computation of electron motion through the tunnel of 
the cavities and the drift tube spaces possible. The method of analysis is 
based on a Lagrangian formulation. Bunching is computed by using a disk 
model of an electron stream in which the electron stream is divided into 
axisymmetric disks of equal charge and each disk is assumed to consist of a 
number of concentric rings of equal charges. The individual representative 
groups of electrons are followed through the interaction gaps and drift tube 
spaces. 

INTRODUCTION 

The klystron is one of the most versatile electron devices used for 
amplification and generation of energy at microwave frequencies at high 
power levels. It has found many applications in communications, radar, mi- 
crowave energy sources for particle accelerations, microwave heating, and 
industrial processing. A recent advance in the depressed collector design 
(ref. 1) has made the high-power klystron a feasible high-efficiency micro- 
wave power source which is specially suited for transmission of large micro- 
wave power from space. 

Efforts to compute rigorously relativistic three-dimensional axisymme- 
tric electron motion in the klystron have been pursued at the Lewis Reseach 
Center. The present investigation serves as a continuation of such efforts 
with the objective of establishing a complete theory of relativistic kly- 
stron interaction. 

In this study, the Lagrangian formulation of a hydrodynamic beam model 
is used. The electron stream entering the interaction gap is subdivided 
into representative charge groups. The individual charge groups are fol- 
lowed through each interaction gap and drift tube space until the output 
interaction gap is reached. Thus electron overtaking and crossover are ap- 
propriately dealt with. The electron stream is divided into N axisymme- 
tric disks of equal charge per rf period, and each disk is assumed to con- 
sist of R concentric rings of equal charge. The rings are elastic and de- 
formable in the axial and radial directions, and the disks are assumed to be 
thin and the rings narrow. The velocity of each ring, its phase with re- 
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spect to the cavity gap voltage, and its radius at a specified position in 
various interaction gaps and in various drift tube spaces are computed from 
three-dimensional large signal programs. 

With the space-charge effects on the bunching process included, the 
debunching effects of the space-charge forces are appropriately dealt with; 
furthermore, with the radial motion considered, radial beam loading and the 
effects of a multidimensional charge motion on the field-electron interac- 
tion process are accurately formulated. 

This investigation separates conveniently into three parts: 
(1) Formulation of relativistic equations of motion in an electromag- 

netic field 
(2) A study of field-electron interaction in the first and second cav- 

ity gaps 
(3) A study of the large signal energy exchange process in the third 

and succeeding cavities up to and including the output cavity 

FORMULATION OF RELATIVISTIC EQUATIONS OF MOTION 

The relativistic equations of motion of a charged particle in a curvi- 
linear coordinate system, such as the circular cylindrical system, can be 
safely derived from an invariant formulation of particle dynamics, such as 
the Hamiltonian or the Lagrangian. Mathematically these functions are 
equivalent. but the Laqranqian method is somewhat more direct. In what fol- 
lows, the Lagrangian formulation is used. 

The Lagrangian of a particle of rest mass 
electromagnetic field determined by the potent 

m0 and char-2 e in an 
ials @ and A is 

L(t) = -mOc2 43-e* + e(i+ - 77) (1) 

where B = u/c, as usual in relativistic formulas. If qi, i = 1,2,3, are 
the three coordinates of any generalized coordinate system, which define the 
position of the charged particle, then the Lagrangian dynamic equations of 
motion are 

d aL aL o 
TX---= 

aqi aqi 
i = 1,2,3 (2) 

where aL/aqi = pi are the canonical momentum components, which together 
form the total momentum vector 7s' of the particle. In circular cylindrical 
coordinates, 

A A A ---* 
U = ;Tr + r;Y + -ii+ 

rp i! 

and 

U2 = ;* + r*i* + ;* 

The field vectors in free space or in vacuum are given by the following re- 
lations: 

2 



By performing the indicated differentiations, we obtain 

pr2L mk + eA, (34 
ar 

p, = rn; + eA, 

. 
PQ = mr*(p + erA 

Q 

W 

(3c) 

Of these equations, the first two, (3a) and (3b), are linear momenta, and 
the third, (3c), is an angular momentum. They are the sums of the relati- 
vistic mechanical momenta, differing from the ordinary (nonrelativistic) 
momenta only by the Fitzgerald factor which appears implicitly in the rela- 
tivistic mass m, and of a momentum of electromagnetic origin. It is as- 
sumed that the acceleration momentum is not important in the formulation. 
The relativistic mass m of the particle at velocity u is given by 

(see appendix A). Next, the derivatives aL/aqi are given by 

-= mrip* - e aL . aAz 
ar (rAQ) + z - ar 1 (44 

(4c) 

In the case of axisymmetric field, the field is rotationally symmetrical, L 
is independent of the azimuthal angle Q, and we obtain from equation (4~) 

The relativistic dynamic equation of motion of the charged particle can 
now be obtained by substituting equations (3) and (4) into equation (2) with 
the help of the following relations: 
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When the result is regrouped, 

& (mi - mri*) = e(E, + r;BZ - ;Ba) (5a) 

$rn; = e + ;B 
. 

Q - rcpBr 
> 

= 0 

(5b) 

We notice that expansion of the left side of both equations (5a) and (5b) 
will contain a term dm/dt; thus, when the energy conservation relation (eq. 
(B-4c) of appendix B) is used, equations (5a) and (5b) become (no = e/q) 

il'D82- dL"B2=- Inollrk-$) -$Ez+(rbBz- ;BQj (6a) 

d$=- ,nolEzQ --$)-$Er+(iBQ-riBrl (6b) 

Consider first the azimuthal equation of motion, equation (5~); the 
momentum integral yields 

PQ = constant 

or 

2' 
+ er2AQ2 = mlrlq + erlAQl (7) 

If electrons have started from the cathode, where r = rl, B = B 
and Q = Ql = 0, the total amount of magnetic flux passing t roug 6 R'a 
circle of radius rl in plane 1 (fig. 1) is found by integrating the 
product of the axial magnetic field B, and the differential ring-shaped 
area 2rr dr from zero to t-1 as follows: 



J rl Yl = 2nrBz u. 

0 

f 

rl 
= 2r r(v XX), dr 

0 

= 2rrlAQl 

where B, = (v x??)~ and in cylindrical coordinates is given by 

B, =i k (rA 
Q 

) 

for a/aQ= 8. We can now interpret the term rlAd as the magnetic flux 
enclosed within the radius rl. 
preted as 112~ 

Similarly the term r2Ag is to be inter- 
times the magnetic flux passing through plane 2 enclosed 

within a radius r2. Thus equation (7) can be rearranged to yield Busch's 
theorem 

or 

Q=- cyb - y) (8) 

where q = YQ is the cathode flux and equation (8) is now referred to any 
plane perpendicular to the axial direction. 

Figure 1. -Formulation d Busch’s theorem. 



Equations (6a), (6b), and (8) form a system of three-dimensional rela- 
tivistic equations of motion of an electron in an electromagnetic field, and 
they are rewritten as follows: 

. . 
r = r-i* - Ino1 )/I-gzEr(l - $) - $ Ez + r;Bz - ;Bg (9a) 

where the E's and B's are the electric and magnetic field components 
which may exist in both the interaction gaps and the drift spaces in a mul- 
ticavity klystron. In an accurate treatment of klystron analysis, both the 
cavity circuit fields and the space-charge fields must be included in using 
equations (9). Thus 

Er = Er-cct + Er-sc Wd 

Ez = EZ-cct + Ez-sc (lob) 

where Er-cc 
in the radia i 

and EZ-cct are the RF cavity gap fields at the beam position 
and axial directions, respectively, and ErDSc and EzBsc are 

the radial and axial space-charge fields, respectively. 
Analytical expressions of the fringing RF electric and magnetic fields 

within and in the vicinity of the interaction gap obtained from a previous 
investigation (refs. 2 and 3) result in the following: 

Er(r,z,t) = EOFr exp(jwt) 

EZh z,t> = EOFz exp(j&) 

Wa) 
for -kLZ< II - 

(lib) 

and 

E,(r,z,t) = EoGr exp(jwt) 

EZ(r, z,t> = EoGz ewbt) 

(124 
for 121~ a 

W'b) 

where 
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Fr = );: !# (pF",, + p>mia) sinh f$)e-pn"a 

n=l 

- m sinh(mz) -- 
Jl(r in) 

(im)Jo(a dm) 

F, = cosh(mz) 
Jo rim 

( ) 

n=l 

n=l 

n=l 

in which EO is the electric field amplitude specified at the midplane of 
the cavity gap (z = 0 and r = a) and is related to the gap voltage by the 
following relations: 

*a 
v, = E. cash m(z - a)dz = 2 m sinh(ma) 

0 

EO 

E. = mVn 
2 sinh(ma) (13) 
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where Vn is the gap voltage of the nth cavity and m is the field-shape 
parameter. For a uniform field, m = 0. 

The three-dimensional nonrelativistic space-charge fields have been de- 
rived (ref. 3) in terms of two static Green space-charge potentials Y and 
9,. The three-dimensional relativistic space-charge fields may be rea J ily 
obtained by relating these Green function potentials as static potentials in a 
moving coordinate system and by applying a proper Lorentz transformation. 
Furthermors since in the moving frame of reference the vector potential 
function A' or B'I = 0, the fields in the laboratory frame can be found as 
follows: 

E r-Schz,t;r',z') 
l0 

= - 
NRUE a 2 9d 

0 

E z~SChf,t;r',z') = - 
IO 

NRw a 2 q 
0 

E vSC(r,z,t;r',z') = 0 

B r-Sc(r,z,t;r',z') = 0 

B Z-SC (r,z,t;r',z') = 0 

B 
5 

Q-SC (r,z,t;r',z') = 

0 
7 Er-sc 

where 

x n 

q( C,P) = 

OD 
c 

n=l 
c 

all E()‘PO 

JoQ )Jo(X,.po) .- 
J1 (‘n) 

e 

---- -- 2 
uZ d 0 i- c 

sign 

(144 

(1W 

(14c) 

Wa) 

W-W 

(15c) 
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- 

-;7 1/ 0 l- $ 
Il=l 

%-I --- 
l E- <Ol 

"z L l- 7 
e m 

are the two modified Green function potentials. In these potential expres- 
sions, t; and P are the two normalized coordinates at the field point, and 
c0 and PO are the two normalized coordinates of the source points. 
The other symbols are defined as follows: 

I()(Xn) 3 Illan) modified Bessel functions of zero and first order, respec- 
tively 

JotAn> 3 Jl(Xn> Bessel functions of zero and first order, respectively 

xn nth root of Bessel function JO(An) = 0 

k free space wave number, W/C 

pn 4YyLT 

a tunnel radius 

When the expressions for the cavity gap fields and the relativistic 
space-charge fields (eqs. (10) to (15)) are substituted into equations (9a) 
and (9b) and the resultant equations are normalized with respect to the 
tunnel radius a, we obtain the relativistic three-dimensional equations of 
motion in dimensionless form as follows: 

Normalized axial equation of motion: 
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Normalized radial equation of motion: 

- (kd2(i2 + i2) 1 g; - (ka)2p;y; 

RU 

rC 

"0 

“00 

V 
eq 

Be 

cp 

5 

i 

P 

r; 

relativistic velocity reduction factor, (L+;$) (l+q-l 

radius of cathode 

relativistic dc beam velocity, uOOR, 

nonrelativistic dc beam velocity, d7-7- 2 e/m0 V. = 5.93x10 

equivalent beam voltage, mOc2/e = 5.11x105 volts 

wl”oo 
wt 
normalized axial coordinate, z/a 

d&-/de 

norma 

b/de 

lized radial coord i nate, p 
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P 
Yu(P,5) 2r Bzb, SIP dp 

ya aa2B0 

YC cathode flux, na2Bc 

WC0 nonrelativistic cyclotron angular frequency, (e/mO)BO 

wPO 
nonrelativistic plasma angular frequency, 

e/m0 IO 

If- EO"UOO 

We note that equations (16) and (17) are highly nonlinear, cannot be solved 
analytically, and must, therefore, be solved on a high-speed digital compu- 
ter. Furthermore the modulation index a should be specified before equa- 
tions (16) and (17) can be used. 

For the input cavity gap (the first) and the second cavity gap a is, 
by definition, small (e.g., to.02 and ~0.07, respectively). In particular, 
for the first cavity, a can be related to the power input to the cavity 
P. and to the total 
r;Sation 

s unt resistance of the cavity R,h i by the 

"1 

al=T= 

where Rsh = Rcav + Rb + Rex; Rcav is the shunt resistance component due to 
cavity losses; Rb is the component from the beam loading, which may be 
negative but is ordinarily positive and often the dominant component of the 
total shunt resistance; and Rex is the reflex load resistance due to 
external losses (load) coupled to the cavity (zero in the case of the input 
cavity). Generally R,h is related to the unloaded Qu and the R/Q 
value of the cavity by the relation 

R 

Qu =Rg 

Hence the value of Rsh can be obtained by values of Qu and R/Q 
which are usually the design parameters for a given cavity. 

CALCULATION OF BUNCHING CURRENT AND VELOCITY MODULATION IN SECOND CAVITY 

Interaction of an unmodulated electron stream with the input cavity 
(first cavity) gap fields gives rise to the velocity modulation of the 
stream. As the beam moves along the first arift tube, the velocity varia- 
tion of the stream is converted into density modulation, and the electron 
current at any point in the drift tube space can be computed from the kine- 
matic of the electrons. 
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Figure 2. - Disk-ring model for computing induced current. 

If we divide the beam into a number N of disks of electrons and we 
divide each disk further into R elementary charge rings (fig. 2), an 
elementary charge ring 
no(zo9r ,to) at time to 

2rro drg dzg containing a charge density 

9 
at a later time t becomes P(z,r,t) 

in an e ement of charge ring 2ar dr dz. From the charge conservation 
principle, we relate these charges by the following equation: 

p(z,r,t)M dr dz = po(ZO,ro, o t > spy) q-j dzo 1 
NR 

The modulus is taken, since the sign of the charge is unchanged even if the 
electrons overtake one another. The summation over (2nrO dro dzo) implies 
that all elements of the charge ring which entered the first cavity gap ap- 
pear within the charge ring 2mr dr dz at the later time t as a result of 
overtaking and trajectory crossing. Thus 

dz,rJ) = pO(zO,rO,tO) 
NR 

(18) 

where the charge density Pg(zO,rg,to) is assumed constant over the beam 
cross section at the injection plane z = zo, and, in terms of the beam cur- 
rent IO, 

IO 
- Po(ZoJ&)) = yT-- 

ab u 0 

We note that r-0 is the mean radius of the charge ring at ZO. The linear 
charge density in any annular ring and at any given displacement plane 
transverse to the direction of the beam is written as 
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ddz,r,t) = -2sp(z,r,t)r dr 

dzO = -2~~o~z0,ro~t0) r. dr - 0 dz I 
NR 

by equation (18). 

dzO Furthermore, by expressing dz as 
I I 

dzO I I uz(zo,rO,ro) dtO 

I I . XT- = uz(z,r,t) dt 

uz(z03ro~t0) de0 
= 

U 
Z( 

v-J) ( ae 

we can write equation (19) as 

da(z,r,t) = -2~Po(z0,ro,t0) 
uz(zO,ro~tO) 

uz(z,r,t) dro 

NR 

(1% 

In the computation of bunching current in the second cavity, it is assumed 
that there is no net current in the radial direction (i.e., small signal 
theory is assumed); then the incremental current through the annular ring 
can be written as 

i(z,t,t) = -2i~p(z O,rO,tO)uz(zO~rO~tO) 

= 2 lb Cl2lro dro 
NR 

(21) 

In terms of the normalized parameters 5 and p, equation (21) can be 
written as 

i( 5,o) = 210 6 (af /b’a 1 l2$0 dpo 
0 NR 

(22 1 
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It is to be noted here that PO = q/a 
used prior to equation (22). 

is not the dc beam charge density 

The total electron‘convection current may be conveniently expressed in 
terms of a Fourier series written in the variables e as 

0 

$.,(ta,e) = A0 + c (An cos ne + B, sin ne) (23 1 

r-k1 

where 

A0 = & J 2r 
i,.,( S,P, e)de 

0 

_ i:O (;f12*lbia p. dpo de0 = 1. 

An = ; 
f 

2a 
i,(S,P,e)cos ne de 

0 

= >y)’ 12’lbia p. cos ne dpo de0 

cos ne de 
0 

and 

B, = + J 2a 
i,(S,p,e)sin ne de 

0 

IO 2r 
=- 

f s 
sin ne de 0 

0 

(24) 

(25) 

(26) 

in which e is the phase of the electron at any point along the stream. 
This is to be related to the injection phase of the electron ~0 at the 
time of entering into the interaction gap space of the first cavity. The 
interaction gap space is defined (fig. 3) as extending from z = -(a.+ 2a) 
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to z = +(a + Za), where 2a is the tunnel diameter and 2a is the 
cavity physical gap length. Thus 

t =t + 2(n. + 2a) + L1- ('+ 2a) 
2 0 uO 31 

or 

OL1 - (a+ 2a) 
e2 = 

% + e9 + uzl 

In terms of the normalized parameter 5, this can be written as 

e2 = ecl + B + a - ( L a -- 2 
a > 

l q1 

(274 

Wb) 

where uzI is the electron velocity at the plane of exit of the first 
cavity gap to be either computed or substituted from small signal theory. 

can 
ing 

The bunching current at the midplane of the second cavity gap (z = z2) 
now be obtained by, first, letting e= e-2 and, second, substitut- 
equation (27b) for 8 in equations (24) and (25). The result is 

in( s,~,e~) = IO + c Fcos ne12' cos n[eo + eg + (k- $- 2) ;;l]deo 

r-k1 

+ f: > sin ne 12n sin n [e, + es + (k - "- 2) i-l]deo 

n=l U 

(28) 

CAVITY GAP 1 CAVITY GAP 2 CAVITY GAP n 

b ,+‘1 
b O 

-IL,-1 * 

ii 
n 

97 

Figure 3. - Geometrical parameters of multicavity klystron. 
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The ratio of harmonic current amplitudes to direct current i s given by 
>2 

_ a-2 
a 

for n = 1, 2, 3, . . . The phase angles of the nth harmonic with 
reference to a pure cosini or pure sine wave of the same frequency are given 
by 

lln = tan -1 Bn 

0 
A 

n 
(30) 

Once the electron convection current is obtained, the induced current, 
and hence the induced voltage, can be computed. Since a2 is small in the 
second cavity, the current induced there as a consequence of the bunched 
electron beam traversing the cavity gap can be computed by the following re- 
lation: 

'(inti)2 = MrMzi2(5,ro2) (31) 

where i2(<,p,e2) is the electron convection current passing through the 
midplane of the second cavity, and M, and M, are radial and axial 

llowing relations beam coupling coefficients, respectively, give: by the fo 
(ref. 4): 

2 

M, = 
12,(v,b) - I1heb) 

I OtYea) 

and 

sin 8,2a. 

Mz= $2a e 

Wa) 

Wb) 

where ye = 6: - ki i 
is the radial propagation constant, k. = W/C, 
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*e = W/LAO, and IO and 11 are the modified Bessel functions of the zero 
and first order, respectively. We note that the axial beam coupling coeffi- 
cient is to be evaluated at the edge of the cavity gap. The voltage across 
the second cavity gap (i.e., across the capacitor of the equivalent shunt 
circuit, fig. 4) is given by 

V 
92 = '2'(ind)Z 

where Z2 is the dynamic shunt impedance of the cavity given by 

R sh 
z2(w) = 1 + 2jsQ, 

in which Rsh is the shunt resistance at resonance, and 6 is the frac- 
tional deviation from resonance and is defined by 

W--w 
6= w 0 

Thus 

k 
a2 = v 0 

Mr2M2zi2( S,P, e2) Rsh2 = 
vO l + 2J*Qu2 

where the subscripts 2 imply that these quantities are to be evaluated in 
cavity gap 2. 

CAVITY GAP 1 2 3 n (OUTPUT1 

Figure 4. - Schematic of multicavity klystron. 
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LARGE SIGNAL ENERGY EXCHANGE AND CALCULATION OF INDUCED CURRENT 

In a multicavity high-power klystron, interaction between the bunched 
electron stream and the cavity gap fields in the third and succeeding cavi- 
ties up to the output cavity becomes complicated. The simpler method of 
computing the induced current used in the section CALCULATION OF BUNCHING 
CURRENT AND VELOCITY MODULATION IN SECOND CAVITY is no longer valid. In 
this section, a general method of approach is used. This method is based on 
Shockley (ref. 5) and Ramo (ref. 6) theory. 

Consider an electron of charge -e that travels a distance 2'1 inside 
the cavity interaction gap space (fig. 3). The gain or loss of its kinetic 
energy is given by 

dW = -e Feet . ;I (33) 

By the theory of Shockley and Ramo, the exchange of energy is related to the 
induced current that flows in the external circuit (i.e., the cavity) and 
the induced voltage that appears across the cavity gap by the following re- 
lation: 

dW = -1 indVind dt (34) 

Setting equation (33) equal to (34) yields 

Tct 
-4 

I Til E 

ind = e Vind 
cct * -.x=eVind.u (35) 

where rcct is the cavity gap field (the circuit field) and y= G/dt is 
the electron velocity. 

Since many electrons are present inside the cavity interaction gap 
space at any instant of time and the electron transit time within the inter- 
action gap space is finite, each elementary current carried at a given mom- 
ent of time by each elementary charge within the interaction gap space will 
contribute to the total induced current. These elementary currents in the 
plane over which the beam enters the interaction gap space, and in the plane 
located some distance away in the direction in which the beam is traveling, 
differ not only in velocity but also in phase. By summing up the elementary 
current or charge within the interaction gap space, we obtain the total in- 
duced current 

where P(r,z,e,r) is the charge density inside the integction 
4 

ap space. 
Alternatively, in terms of convection current density Jc (= pu , equa- 
tion (37) can be written as 
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/ 

E 
rind(t) = ;t, . ~ dT 

T 
(36) 

where dT = r dr dQ dz is the volume element. The integration is taken 
over the whole volume of space of the interaction gap space occupied by the 
bunched electrons at the time t. We note that, since the cavity gap field 
EC t 

7 
is proportional to the induced voltage 

ve ocity 
Vin , for a given electron 

u, the induced current is indepenaent o f the voltage across the 
cavity gap. 

Using the first expression, equation (36), we find 

b'(z) 
I indtt) = 2n 

cct 
dr, z,tG - r r ar dz (37) 

it-d 

where b'(z) is the edge of the beam as a function of z and is definea by 

s t . b'(z) = r. + r dt 
0 

(38) 

in which rg is the radial position of the electron at the entrance to the 
interaction gap space, here to be referred to as the entrance plane of the 
first cavity gap space. 

The integral of equation (37) can be evaluated by applying the charge 
conservation principle (see fig. 2) to write the charge density P(r,z,t) as 
function of the phase of the injected electrons at the entrance to the in- 
teraction gap space of the first. cavity as follows: 

dr,z,t) = ~O(rO,zO,tO) c /%?I 131 
f 

b 

= Po(ro9zoJ0) -0 
r. dro 

Cl 

uz(ro~zOJO)dtO 

s 

b'(z) 
r dr 

u,(r,z,t)dt 

0 

b [ 1 2 uz(ro'zo'to) 
= pO(rO~zo~tO) b+j u,(r,z,t) 

deO 

CI I 
de (39) 

where beq is the equilibrium, or the average, radius of the outer charge 
ring centroid given by the relation 



I I I I lllllllllllllllll lllll lllllllllllllllllll I I I 

b a - wPO 
eq 

R;12(1 - 82f'2 wco 

in which ~~0 and wcO are the nonrelativistic plasma and cyclotron 
angular frequencies, respectively, and R, is the relativistic reduction 
factor as given in the section FORMULATION OF RELATIVISTIC EQUATION OF 
MOTION. 

Substituting equation (39) into equation (37), we obtain 

I ind(t) = 2~~o(ro~zo'tobo 

+ 
E z-cct 

V ind 

r dr dz 

r dr dz 

(40) 

where uz(rO,zO,tO) = u0 is the dc beam velocity. In terms of the normal- 
ized parameters 5 and p, this is written as 

(k+2a) b'(z) 

Iind(t) = 2rIO -~ [ 1's' J a (je+~+) 
_ (a+W o 

a 

X (41) 

Furthermore the induced current Iind may conveniently be represented by a 
Fourier series in the variable e as follows: 
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r 

/ 

2r 2* 
'ind(n) (u,t) = $ Iind(t)de + 

f: CoSnne d- 
‘indtt) cos ne de 

0 n=l 

+ f: si: ne 12m Iind sin ne de (42) 

n=l 

where Iind(t) is given by equation (41). 
The two integrals in equation (42) can be evaluated, first, by trans- 

forming the variable e in terms of w, the electron injection phase at 
the entrance plane to the interaction gap space of the first cavity. With 
reference to figure 3, we note that the times, tl, t 
by electrons to pass through the rf gaps are 

, t , . . ., tn, taken 
interre ate : 5 a 

t3 = t2 + a+ + L2 - (!a+ 2a) 

uzl uz2 

L1 t0+LLc2a+-+ L2 - (a + 2a) 
= 

uO uzl uz2 

In terms of the normalized parameter 5, this can be written as 

In general 

n=2 

en = 
e. + eg + 

c 

*;;'+(++2)~~ 

n=l 

where a = 2(a + 2a)(w/ug) is the dc transit angle of the electron in tra- 
versing i! he first interaction gap space. 

Next, by relating the cavity gap field rcct with the induced voltage 
Vind through equations (11) to (13), we can write 
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5’,ct 
v. ind 

mv,., COS( en + An) 1 G 
= 2 sinh(ma) 0 V, cos(e, + An) F 

m G 
= 

0 2 sjnh(ma) F 

Furthermore, for simplicity, equation (42) is written in terms of the Four- 
ier coefficients, AG, An, and Bn. By a substitution of equation (43) 
into equation (42), we obtain 

where 

The G's are given b 
r 

equations (11) to (12), and the variable 8 is 
given by equation (43 . The amplitudes of the harmonic to dc can be ob- 
tained by using the relation 

and the phase angle is related by 

A = tan 
-1 Bn 

n ji- 
n 

(47) 

(48) 

(49) 
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With the induced current obtained from equations (42) to (49), the mod- 
ulation index for the third and succeeding cavities up to the penultimate 
cavity can be computed through an iteration procedure. To illustrate this 
method of approach, let us consider a case of computing a3 (i.e., the gap 
voltage of the third cavity) as an example: 

(1) Find the induced current as computed at the midplane of the third 
Cavity gap, called I(ind)3. 

(2) Let the gap voltage Vg3 = 0, and compute the gap voltage using the 
relation 

V 
#a = '3(")I(ind)3 

where 

R 
Z,(w) = 1 ? 

+ 2J6Qu3 

(3) Using the value of Vg3a as obtained in ste 
solve the equations of motion, equations (16) and (17 P 

(2), formulate and 
, and thus obtain the 

induced current, called i3a. 
(4) Using i3a, as in step (2), compute the gap voltage, called the 

gap voltage v 3b. 
(5) Repea? steps (3) and (4) until a gap voltage vg3k is obtained so 

that the following condition converges: 

In the case of the output cavity, the gap voltage VgO is simply 

V go = 'out(")'(ind)O (50) 

where I(ind)O is the current induced in the output cavity, and Zout(u) is 
the dynamic shunt impedance of the output cavity given by 

ZOUt(“) = ‘1 +R;;;Quo 

Power delivered to the external load of the cavity is obtained by 

P out = i ReI (ind)OVtO 

(51) 

(52 ) 

where V*O is the complex conjugate of V 0. Finally, the output 
cavity e ficiency can be computed in the 8 u 9 ual way: 
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P out 
'I=v= 

(1/2)Re1 ( ind)OvtO 

in volo 
(53) 

where VO is the dc beam voltage, and IO is the dc beam current, which is 
related to the perveance by the relation 

where K 312 = IO/V0 
= 5.110x 05 P 

is the nonrelativistic perveance, and Ve = mOc2/e 
volts is the equivalent beam voltage. 

SUMMARY 

Three-dimensional equations of motion of relativistic electrons in an 
axisymmetric field in the presence of space-charge forces has been ob- 
tained. The field-electron interactions in various interaction gaps and in 
various drift spaces are investigated by using a Lagrangian formulation of 
the hydrodynamic model. The equations of motion are used to find the velo- 
city of cacti disk of electrons, its phase with respect to the interaction 
gap voltage, and its radius at a specified position in various interaction 
gaps and in various drift spaces. The velocity modulation and electron 
bunching in the input and second cavities are formulated by using the small 
signal approach; however, both the radial and axial coupling coefficients 
are used to compute current. The induced current in the third and succeed- 
ing cavities up to and including the output cavity is computed on the basis 
of Shockley and Ramo theory. Power and efficiency are calculated in the 
usual way. 
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APPENDIX A 

MODIFICATION OF PARAMETERS DUE TO RELATIVISTIC VELOCITY 

Mass Increase 

When the electrons are accelerated through very high potentials, they 
experience an increase in mass which modifies the velocity-potential rela- 
tionship. The increase of the electronic mass with increasing electron 
velocity is given from the transformation law originally proposed by H. A. 
Lorentz (1904): 

where B 6 u/c, as usual in relativistic formulas; c = 3x108 meters per sec- 
ond is the velocity of light; m is the mass of the electron at the velocity 
u; and m0 is the electronic rest mass at zero velocity. 

Velocity of Electron 

If W is the total energy of the electron in joules, the relation 

W = mc2 (A21 

expresses the equivalence of the instantaneous mass and the inertia of 
energy. The total energy of an eiectron is the sum of the energy inherent 
in its mass plus its kinetic energy. The total energy change of an electron 
when it is accelerated through a potential of VO volts, can, according 
to equation (A-2), be expressed by 

eV o = AW = c2(m - mo) 

= mOc2 + - 1 
( > 

Thus 

m -f-po+l 
m” 0 

By introducing the energy equivalent of the electron rest mass m0 as 

eVe = mOc2 

(A31 

(A41 

(A5) 

we obtain 
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m c2 
ve+= o.5110x106 volts 

Hence equation (A4) can be written as 

0-a 

m v. + 1 -=- 
mO 'e 

(A7) 

When this is substituted into equation (Al), we obtain the relation between 
the electron velocity u and the accelerating potential V: 

or, alternatively, 

1 
112 

(A8a) 

= uOORu (for V in kilovolts) (A8b) 

where 

is the nonrelativistic expression of the electron velocity, and 

i- 1+ 1 v. -- 2 ‘e 

1+k 
e 

is the relativistic correction factor. 

Angular and Plasma Frequency of Electron Stream 

The angular frequency of revolution of the electron in the homogeneous 
magnetic field B is defined as the cyclotron frequency given by 
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eB wc = iii (A9 

At moderate electron velocities, the increase in electronic mass is negli- 
gibly small; hence oc is considered to be independent of the velocity of 
the electron. However, this is not true for the high-velocity electron. 
The cyclotron frequency for large velocities follows by substitution of the 
relativistic mass of equation (Al) for m: 

=%Bl-; 

2 112 

wC mO [ 1 0 

U2 [ 1 112 =W co l- c 
0 (AlO) 

where wc0 ! (e/mO)B is the nonrelativistic cyclotron frequency. In 
terms of Ve, equation (AlO) can be written as 

(All) 

In like manner, the relativistic plasma frequency can be found by substitu- 
ting the relativistic mass, equation (Al), and the relativistic velocity, 
equation (A8b), for m and u, respectively: 

Fi IO 
wP = 

i- Eo""o 

-l/4 

= wpo 
( ) 
l+;k 

where w po = is the nonrelativistic plasma frequency, and uoo, as 

given in equation (A8b), is the nonrelativistic velocity of the electron. 
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APPENDIX B 

ENERGY CONSERVATION PRINCIPLE 

Consider an electron which has been accelerated through a potential 
VG volts and gained kinetic energy in the amount of eVD; then, by the 
equivalence of mass and energy principle, the change in the total energy of 
the charged particle is 

SW = eVo = c2(m - mo) = c26m W) 

by equation (A3) of appendix A. 
Work done by the force in moving the charged particle of mass m a 

distance $ is given by 

where the Lorentz force law has been involved on the right side of the 
equation. Now, power is the rate of change of energy; thus, dividing both 
sides of equation (B2) by dt, we obtain 

(B3) 

where c= $/dt, and (zx i?). c is identically equal to zero. Equation 
(Bl) is differentiated with respect to time, and the resultant expression is 
used to write equation (B3) as follows: 

or 

(B4d 

(B4b) 
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In a cylindrical coordinate system, this is written as 

;E, +riE +'dz 

veQ 
034~) 
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